Search results for "Von Neumann's theorem"

showing 4 items of 4 documents

Generation of Frames

2004

It is well known that, given a generic frame, there exists a unique frame operator which satisfies, together with its adjoint, a double operator inequality. In this paper we start considering the inverse problem, that is how to associate a frame to certain operators satisfying the same kind of inequality. The main motivation of our analysis is the possibility of using frame theory in the discussion of some aspects of the quantum time evolution, both for open and for closed physical systems.

Physics and Astronomy (miscellaneous)General MathematicsFrame (networking)Compact operatorTopologySIC-POVMAlgebraVon Neumann's theoremOperator (computer programming)Multiplication operatorHermitian adjointHilbert spaces quantum time evolutionFrameUnitary operatorSettore MAT/07 - Fisica MatematicaMathematicsInternational Journal of Theoretical Physics
researchProduct

Rolle's Theorem for Polynomials of Degree Four in a Hilbert Space

2002

AbstractIn an infinite-dimensional real Hilbert space, we introduce a class of fourth-degree polynomials which do not satisfy Rolle's Theorem in the unit ball. Extending what happens in the finite-dimensional case, we show that every fourth-degree polynomial defined by a compact operator satisfies Rolle's Theorem.

Hilbert spacesDiscrete mathematicsHilbert manifoldRolle's theorempolynomialsApplied MathematicsHilbert spaceHilbert's basis theoremCompact operator on Hilbert spacesymbols.namesakeVon Neumann's theoremHilbert schemeRolle's TheoremsymbolsBrouwer fixed-point theoremAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Metric Operators, Generalized Hermiticity and Lattices of Hilbert Spaces

2015

Pseudo-Hermitian quantum mechanics (QM) is a recent, unconventional, approach to QM, based on the use of non-self-adjoint Hamiltonians, whose self-adjointness can be restored by changing the ambient Hilbert space, via a so-called metric operator. The PT-symmetric Hamiltonians are usually pseudo-Hermitian operators, a term introduced a long time ago by Dieudonné for characterizing those bounded operators A that satisfy a relation of the form GA = A G, where G is a metric operator, that is, a strictly positive self-adjoint operator. This chapter explores further the structure of unbounded metric operators, in particular, their incidence on similarity. It examines the notion of similarity betw…

Discrete mathematicsUnbounded operatorVon Neumann's theoremPure mathematicsMetric operators Hermiticity Pip-spacesSettore MAT/05 - Analisi MatematicaHermitian adjointNuclear operatorOperator theoryOperator normCompact operator on Hilbert spaceMathematicsQuasinormal operator
researchProduct

A note on faithful traces on a von Neumann algebra

2009

In this short note we give some techniques for constructing, starting from a {\it sufficient} family $\mc F$ of semifinite or finite traces on a von Neumann algebra $\M$, a new trace which is faithful.

Pure mathematics$C^*$-moduleTrace (linear algebra)Mathematics::Operator AlgebrasGeneral MathematicsFOS: Physical sciencesMathematical Physics (math-ph)Algebrasymbols.namesakeVon Neumann's theoremVon Neumann algebraSettore MAT/05 - Analisi MatematicasymbolsAbelian von Neumann algebraAlgebra over a fieldAffiliated operatorSettore MAT/07 - Fisica MatematicaMathematical PhysicsVon Neumann architectureMathematics
researchProduct